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Recent theoretical studies have shown that conditioning on an instrumental variable (IV), a variable that is
associated with exposure but not associated with outcome except through exposure, can increase both bias
and variance of exposure effect estimates. Although these findings have obvious implications in cases of known
IVs, their meaning remains unclear in the more common scenario where investigators are uncertain whether a
measured covariate meets the criteria for an IV or rather a confounder. The authors present results from two
simulation studies designed to provide insight into the problem of conditioning on potential IVs in routine epide-
miologic practice. The simulations explored the effects of conditioning on IVs, near-IVs (predictors of exposure that
are weakly associated with outcome), and confounders on the bias and variance of a binary exposure effect
estimate. The results indicate that effect estimates which are conditional on a perfect IV or near-IV may have
larger bias and variance than the unconditional estimate. However, in most scenarios considered, the increases in
error due to conditioning were small compared with the total estimation error. In these cases, minimizing unmeasured
confounding should be the priority when selecting variables for adjustment, even at the risk of conditioning on IVs.

bias (epidemiology); confounding factors (epidemiology); epidemiologic methods; instrumental variable; precision;
simulation; variable selection

Abbreviations: IV, instrumental variable; RD, risk difference; RR, risk ratio.

Editor’s note: An invited commentary on this article ap-
pears on page 1223, and the authors’ response appears on
page 1228.

In studies of exposure effect, measured and unmeasured
factors that are associated with both exposure and outcome
may confound the targeted causal effect. Estimating the ex-
posure effect conditional on all confounding factors yields
consistent estimates (1–4), so choosing which variables to
use for adjustment in studies with many measured covariates
is an important step for ensuring the validity of effect esti-
mates. In an attempt to mimic a randomized trial, some
authors have argued that all measured preexposure covariates
should be balanced between exposure groups (5–8). This

strategy is equivalent to selecting all predictors of exposure,
a common practice when confounder adjustment is carried out
via the propensity score (9). Other authors have argued against
this practice on the grounds that adjusting for some types of
covariates may increase rather than decrease bias (10–12).

In particular, recent literature has questioned whether in-
strumental variables (IVs) (or instruments) should be con-
ditioned upon in effect estimation. IVs are variables that are
associated with exposure but are not associated with out-
come, except through their effect on exposure. IVs may be
used to obtain an unbiased estimate of exposure effect in the
presence of unmeasured confounding via the class of IV
methods. (See recent reviews (13–16) for precise definitions
of IVs and IV methods.) Because IVs are, by definition,
predictors of exposure, any confounder selection strategy
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that is based on selecting the predictors of exposure will be
likely to include IVs.

Rubin (17) suggested that including a variable that is un-
related to outcome in the propensity score may reduce estima-
tion efficiency, and that result was confirmed in simulation
studies (18, 19). Theoretical results presented by Hahn (20)
and White and Lu (21) show that selecting confounders to
maximize independent variation in the exposure will result
in more efficient estimators. In addition, theoretical analyses
have established that including IVs in the set of conditioning
variables can increase unmeasured confounding bias (22–24),
and empirical examples presented by Bhattacharya and Vogt
(22) and Patrick et al. (25) found that including a ‘‘known’’
instrument in the propensity score model resulted in an esti-
mate which was farther from the assumed truth than that
obtained from the model that did not include the IV.

Despite the evident drawbacks of conditioning on an IV,
the implication of these results for epidemiologic practice
remains unclear. True instruments are difficult to identify and
cannot be verified empirically (15). For example, in a series
of commentaries on a paper by Stukel et al. (26), authors
debated whether or not the assumed IV, regional cardiac
catheterization rate, was more likely to be a confounder of
the association between invasive cardiac management and
survival of acute myocardial infarction and should therefore
be adjusted for (27–30). Moreover, in the presence of unmea-
sured confounding, an IV may look mistakenly like a con-
founder, since it may be associated with exposure and
associated with outcome conditional on exposure. Finally,
the available theoretical studies of this issue provide results
under linear models and do not indicate the magnitude of the
increases in bias and variance for other models. Any increase
in bias due to unnecessary conditioning must be weighed
against the danger of excluding real confounders from the
conditioning set—an issue that is particularly troubling in sec-
ondary analyses of electronic health-care data that often rely
on adjusting for hundreds of confounding covariates (31, 32).

Our objective in the current analysis was to explore the
magnitude of the effects on bias and variance of conditioning
on an IV in a range of common epidemiologic studies of a
binary exposure. Here we expand on the theoretical analyses
by providing quantitative results under a range of common
linear models and by further providing results under multi-
plicative models. We focus on the case where an IV may exist
in the set of measured variables but it is uncertain to investi-
gators. We present results from a Monte Carlo simulation
study that considers true instruments, variables with no direct
effect on unobserved confounding factors or outcome, and
‘‘near-instruments,’’ variables that are weakly associated with
the unmeasured confounder. We also explore effects under vary-
ing assumptions about the strength of the IV association with
exposure and the magnitude of the unmeasured confounding.

MATERIALS AND METHODS

Review of the theory

We refer to X as the exposure of interest and Y as an
outcome that may be caused by X. We assume that there
exists an unobserved factor, U, that confounds the association

between X and Y and a measured covariate, Z. If Z satisfies
the criteria for an IV for the exposure-outcome pair (X, Y),
then there is no association between Z and Y, except through
X, as shown in Figure 1. We may think of this graph as repre-
senting residual associations after controlling for a vector of
measured confounders. In addition, U may represent a constel-
lation of many unobserved confounders, and Z may represent
the combined effect of multiple instruments. The true expo-
sure effect and target of estimation is b2. The parameter a2

controls the strength of the IV association with exposure. The
magnitude of confounding is dependent on both a1 and b1.

We want to compare the bias of the crude, unadjusted esti-
mator of exposure effect (given by the coefficient of the
regression of Y on X) with the bias of the estimator for expo-
sure effect that conditions on Z (given by the regression
coefficient on X in the regression of Yon X and Z). We follow
the example of Pearl (24) and assume a linear structural equa-
tion framework among zero-mean, unit-variance variables.
Under these assumptions, the crude association between
X and Y is given by

EðY jX ¼ x þ 1Þ � EðY jX ¼ xÞ ¼ b2 þ a1b1:

This quantity is biased for estimation of b2 owing to con-
founding from U, and the bias is equal to a1b1. The asso-
ciation between X and Y conditional on Z is given by

EðY jX ¼ x þ 1; Z ¼ zÞ � EðY jX ¼ x; Z ¼ zÞ¼ b2 þ
a1b1

1�a2
2

:

The bias of this estimator is a1b1

��
1 � a2

2

�
; which is

greater in absolute magnitude than a1b1 when b1, a1, and
a2 are all nonzero. If a1 or b1 is zero, then both estimators
are unbiased. If a2 ¼ 0, then these biases are equal.

Therefore, in this scenario, conditioning on an IV increases
the bias of the exposure effect estimator compared with the
unadjusted estimator. This phenomenon can be explained
intuitively if we think of partitioning the variation in the
exposure variable, X, into 3 components: the variation ex-
plained by Z, the variation explained by U, and the unex-
plained variation. The proportion of the variation explained
by U, along with the association between U and Y, deter-
mines the magnitude of the unobserved confounding. When
we condition on Z, we effectively remove one source of var-
iation, thereby making the variation explained by U a larger
proportion of the remaining variation in X. Thus, the re-
sidual confounding bias from U is amplified as a result of

YX

U

Z

2

11

2

Figure 1. Causal diagram showing an unmeasured confounder, U,
and an instrumental variable, Z, of the exposure-outcome pair (X, Y).
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conditioning on Z. This intuition holds whenever there is
unobserved confounding and an IV, regardless of the specific
assumptions made above. In Appendix 1, we provide an ex-
ample data set that exhibits bias amplification.

Empirical example

The example of Patrick et al. (25) provides context for the
simulations that follow. In that study, rates of mortality and
hip fracture among elderly initiators of statin therapy and
glaucoma medications were compared. (The source popula-
tion and cohort are described in Appendix 2.) Information on
demographic characteristics, pretreatment diagnoses, and
pretreatment use of health-system services was extracted to
define 202 potential confounders. The investigators compared
methods of selecting confounders for inclusion in the pro-
pensity score model for exposure to statins versus glaucoma
drugs. The inclusion of one covariate, prior glaucoma diag-
nosis, resulted in effect estimates that consistently moved
away from the expected effect based on the evidence from
randomized controlled trials (see Figure 2).

Glaucoma diagnosis is strongly negatively associated with
exposure to statins versus glaucoma drugs (odds ratio ¼ 0.07),
but it does not independently predict mortality or hip frac-
ture. Therefore, glaucoma diagnosis appears to be acting
as an IV in this example, since its association with exposure
is much stronger than its association with outcome, and the
observed changes in effect estimates may be a manifestation
of bias amplification. Although the analysis of hip fracture
is one of the most extreme examples of bias amplification
documented in the literature (an increase of 21% in the fully
adjusted analysis), so much residual confounding remains
that including the IV in the propensity score model does not
alter study conclusions. In addition, the strength of the IV-
exposure relation in this example makes the IV easy to iden-
tify and remove by investigators.

Monte Carlo simulation studies

Pearl (24) and White and Lu (21) provide formulas for the
increases in bias and variance associated with conditioning
on an IV or near-IV, but the rescaling of these results to a

Figure 2. Estimated hazard ratios (HRs) for mortality (top) and hip fracture (bottom) in initiators of statin medication versus initiators of glaucoma
medication (details in Appendix 2). The adjustment factors used for each estimate, including the potential instrumental variable (IV) glaucoma
diagnosis, are shown on the left. The x-axis is presented on the log scale with tick marks unlogged. The approximate expected effects for mortality
and hip fracture were hazard ratios of 0.85 and 1.01, respectively (25). Horizontal bars, 95% confidence interval.
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given scenario requires considerable computation. Therefore,
we performed 2 Monte Carlo simulation studies to obtain
quantitative results under a range of epidemiologic scenarios.
In the first experiment, we simulated data under an additive
model and assumed that the goal of estimation was the risk
difference in outcome between levels of exposure. In the
second experiment, we simulated data under a multiplicative
model and considered the goal of estimation to be the risk
ratio for the outcome according to level of exposure. For
simplicity and to reflect a common study framework, all vari-
ables are binary.

Both simulation studies assumed the same basic causal
structure, shown in Figure 3. The true exposure effect and
target of estimation is b2. Note that Z is not a perfect in-
strument in Figure 3 as it was in Figure 1 because it is
associated with the unmeasured confounder U through c1.
However, by varying the value of c1, we can explore the
impacts of conditioning on Z when it is a perfect instrument
and when it is a near-instrument or confounder. As shown by
Pearl (24), bias amplification may result even when the con-
ditioning variable is not a perfect instrument. In addition, we
consider relatively large values of c1 to compare the risks of
adjusting for an IV with the benefits of adjusting for a real
confounder. The code used to produce and analyze the sim-
ulations is available in Web Appendix 1, which appears on
the Journal’s Web site (http://aje.oxfordjournals.org/).

Simulation under additive risk

In each data set, we simulated a binary variable, Z, with
Pr(Z ¼ 1) ¼ 0.5 and binary variables U, X, and Y, such that

PrðU ¼ 1j ZÞ ¼ c0 þ c1Z;
PrðX ¼ 1j U; ZÞ ¼ a0 þ a1U þ a2Z;
PrðY ¼ 1j U;XÞ ¼ b0 þ b1U þ b2X:

Variables were simulated in the above order so that the risk
of outcome would depend directly on U and X and indi-
rectly on Z. The parameters c0, a0, and b0 define the base-
line prevalence of each variable, and each effect parameter
may be interpreted as a risk difference. The values considered
for each parameter are listed in Table 1. These values were
chosen to provide the widest possible range of scenarios
within the (0, 1) probability bounds for each variable.
We considered 2 values for the baseline risk of outcome,
b0 in {0.01, 0.2}, corresponding to rare and relatively com-

mon outcomes, respectively. Based on the value of b0, we
constructed a range of possible values for b1. Within this
restriction, we considered all possible combinations of pa-
rameter values, resulting in 1,280 unique simulation scenar-
ios. We included only 2 values for the exposure effect, b2,
because bias is invariant to the value of this parameter. We
included only positive parameter values to make the illus-
tration of concepts as clear as possible and to avoid repeating
scenarios that are symmetric and yield identical results.

For each simulation scenario, we simulated 2,500 data
sets of size n ¼ 10,000. In each data set, we calculated

� the crude risk difference (RD) between X and Y, RDcrude,
and

� the Mantel-Haenszel risk difference (33) between X and Y
conditional on Z, RDcond.

Both RDcrude and RDcond are estimators of the exposure
effect, and we compared the performance of these two
estimators.

Simulation under multiplicative risk

Using the same binary variable Z as in the additive study,
we simulated binary variables U, X, and Y such that

Pr
�
U ¼ 1j Z

�
¼ c0c

Z
1 ;

Pr
�
X ¼ 1j U; Z

�
¼ a0aU

1 a
Z
2 ;

Pr
�
Y ¼ 1j U;X

�
¼ b0b

U
1 b

X
2 :

Simulating variables in the above order creates data with the
causal structure depicted in Figure 3 with associations pa-
rameterized as risk ratios. The values considered for each
parameter are listed in Table 2. We again considered all
possible combinations of parameter values, which resulted in
1,440 unique simulation scenarios. We used multiple values
of the true exposure effect, b2, since bias was no longer
invariant to its value.

In each scenario, we simulated 2,500 data sets of size
n ¼ 10,000 and calculated

� the crude risk ratio (RR) between X and Y, RRcrude, and
� the Mantel-Haenszel risk ratio (33) between X and Y con-

ditional on Z, RRcond.

As in the additive simulations, we compared the two estima-
tors of exposure effect, RRcrude and RRcond.

Evaluation of estimator performance

These simulation studies were designed to compare the
performance of estimators for b2 with and without condi-
tioning on Z. For an estimator of exposure effect b̂2, we
estimated the bias with the equation

Bias ¼ 1

S

XS

s¼1

b̂2ðsÞ� b2;

where b̂2ðsÞ is the value of b̂2 in the sth data set and S ¼ 2,500
is the number of simulated data sets. We estimated the standard

YX

U

Z

2

11

1

2

Figure 3. Causal diagram showing the structure of the simulation
studies. Depending on parameter values, the measured covariate Z
may act as a confounder or as an instrumental variable for the expo-
sure-outcome pair (X, Y).
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error of b̂2 using the square root of the sample variance of
b̂2ðsÞ across simulated data sets. We calculated the bias and
variance of the exposure effect estimators separately in each
simulation scenario.

RESULTS

Additive simulation

Figure 4 shows the performance of RDcrude on the x-axis
versus that of RDcond on the y-axis. The left panel displays
the biases of both estimators, and the right panel shows the
standard errors. Results are shown for all simulation scenarios
with b0 ¼ 0.2, b2 ¼ 0, and 3 values of c1. All values of b1,
a1, and a2 are shown; the values of a1 and b1 are not differ-
entiated (but they may be inferred from the amount of crude
bias for a given scenario). Results for other values of b0, b2,
and c1 are similar to the results shown here and are available
in Web Appendix 2 (Web Figures 1–4). In each plot, the solid
diagonal marks equality. A point on the line indicates a sim-
ulation scenario where the bias or standard error is invariant
to conditioning on Z; scenarios where the bias or standard
error is increased or decreased by conditioning on Z are
represented by points above or below the line, respectively.

In the top row of plots in Figure 4, c1 equals 0, indicating
that Z is simulated to be a perfect instrument for the exposure-

outcome pair (X, Y). Therefore, the bias in RDcrude is due to
unobserved confounding from U. In general, conditioning
on the instrument, Z, results in an estimator of exposure
effect that is more biased than the crude estimator. In addition,
the standard error of RDcond is often larger than the standard
error of RDcrude. The magnitude of these increases depends
on the value of a2. When Z is a strong instrument (a2 ¼ 0.33),
the increases in bias and standard error due to conditioning on
Z are largest; when Z is a weak instrument (a2 in {0.06, 0.18}),
the increases are negligible; when Z has no association with
exposure (a2 ¼ 0), there is no increase in either bias or stan-
dard error.

In the center row of Figure 4, c1 equals 0.06, indicating
that Z is not a perfect instrument because Z is associated
with Y through the unobserved confounder, U. However, we
may consider Z to be a near-instrument (or near-confounder),
since its association with U is relatively weak. In these
scenarios, conditioning on Z tended to result in increased
bias in simulation scenarios with the largest crude bias and
decreased bias in simulation scenarios with smaller crude
bias. In the former case, the unobserved confounding due to
U overwhelms the relatively small amount of confounding due
to Z. In the latter case, the confounding due to U is smaller, and
Z accounts for more of the overall confounding bias of
exposure effect. The effect on standard error was similar
to that observed in the top row (where Z is a perfect IV).

Table 1. Parameter Values Used in the Additive Simulationsa

Variable Baseline Risk Risk Difference Corresponding Risk Ratio

U c0 ¼ 0.3 c1: 0, 0.006, 0.06, 0.24, 0.6 c1: 1.0, 1.02, 1.2, 1.8, 3.0

X a0 ¼ 0.3 a1: 0, 0.06, 0.18, 0.33 a1: 1.0, 1.2, 1.6, 2.1

a2: 0, 0.06, 0.18, 0.33 a2: 1.0, 1.2, 1.6, 2.1

Y b0 ¼ 0.2 b1: 0, 0.08, 0.36, 0.5 b1: 1.0, 1.4, 2.8, 3.5

b2: 0, 0.2 b2: 1.0, 2.0

b0 ¼ 0.01 b1: 0, 0.004, 0.018, 0.5 b1: 1.0, 1.4, 2.8, 51

b2: 0, 0.2 b2: 1.0, 21.0

a The value of b0 determines the set of potential values for b1 and b2. Within that restriction, all possible combi-

nations of parameter values were considered. The corresponding risk ratios are calculated on the basis of the

baseline prevalence of each variable and will vary depending on the values of other variables.

Table 2. Parameter Values Used in the Multiplicative Simulationsa

Variable Baseline Risk Risk Ratio Corresponding Risk Difference

U c0 ¼ 0.3 c1: 1, 1.02, 1.2, 1.8, 3 c1: 0, 0.06, 0.06, 0.24, 0.6

X a0 ¼ 0.3 a1: 1, 1.1, 1.3, 1.8 a1: 0, 0.03, 0.09, 0.24

a2: 1, 1.1, 1.3, 1.8 a2: 0, 0.03, 0.09, 0.24

Y b0 ¼ 0.2 b1: 1, 1.2, 2.2 b1: 0, 0.04, 0.24

b2: 1, 1.2, 2.2 b2: 0, 0.04, 0.24

b0 ¼ 0.01 b1: 1, 2.2, 8.0 b1: 0, 0.012, 0.07

b2: 1, 2.2, 8.0 b2: 0, 0.012, 0.07

a The value of b0 determines the set of potential values for b1 and b2. Within that restriction, all possible combi-

nations of parameter values were considered. The corresponding risk differences are calculated on the basis of the

baseline risk of each variable and will vary depending on the values of other variables.
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In the bottom row of Figure 4, c1 equals 0.24, indicating
that Z is a confounder in these scenarios. When we condition
on the confounder, the bias is always equivalent or decreased,

but the standard error may increase or decrease. As before,
the magnitude of the increase in standard error is determined
by the value of a2, with the largest increases occurring when
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Figure 4. Bias (left panels) and standard error (right panels) of risk difference (RD) estimators with and without conditioning on Z. Each point
represents one simulation scenario in the additive simulations with c1 ¼ 0 (upper sections), c1 ¼ 0.06 (middle sections), or c1 ¼ 0.24 (lower
sections). The symbols identify values of a2 (s, zero; n, 0.06; þ, 0.18; 3, 0.33). The solid diagonal line marks equality. Dashed lines mark the
threshold for a 10% increase or decrease, and dotted lines mark a 20% increase or decrease.

1218 Myers et al.

Am J Epidemiol. 2011;174(11):1213–1222



a2 equals 0.33. Furthermore, when a2 equals 0, Z has no
direct association with exposure, but conditioning on Z still
reduces the bias.

Across all of the additive simulation scenarios defined in
Table 1, the largest absolute increase in bias due to condi-
tioning on Z was an increase of 0.018 on a crude bias of
0.141. This scenario had the highest value considered for
each of a1, b1, and a2 and c1 ¼ 0. (Equal biases were found
across values of b0 and b2.) The largest observed increase in
standard error due to conditioning on Z was an increase of
0.003 on a crude standard error of 0.009. This scenario had
the highest value considered for all parameters.

Because a2 is shown to be the most important parameter
in determining the magnitude of the increases in bias and
variance when conditioning on Z, we further considered a sce-
nario with a larger value for a2. In the case of a binary expo-
sure, the value of a2 is constrained by the (0, 1) bounds on
probability of exposure. Therefore, in order to increase a2,
we reduced the baseline prevalence of exposure (a0 ¼ 0.1)
and chose the other parameter values as follows: c0 ¼ 0.3,
c1 ¼ 0, a2 ¼ 0.6, b0 ¼ 0.2, b1 ¼ 0.5, and b2 ¼ 0. Simulating
with these values yielded biases of 0.101 and 0.158 for
RDcrude and RDcond, respectively, representing a 56% in-
crease in bias. The standard errors of RDcrude and RDcond

were 0.01 and 0.012, respectively, representing a 20% in-
crease in standard error.

We further repeated one simulation scenario under varying
study sizes to explore the bias-variance trade-off as study size
is reduced. In particular, we use the scenario reported above
with the largest absolute increase in bias due to conditioning
on Z from Table 1. Figure 5 displays the standard error of
RDcrude and RDcond under a range of study sizes. The stan-
dard error increases rapidly as the study size decreases, and
the increase in standard error attributable to conditioning on
Z is negligible compared with the impact of study size. In
addition, even at the smallest study size considered (n ¼ 100),
the standard errors of both RDcrude and RDcond are smaller
than the bias in this scenario.

Multiplicative simulation

Figure 6 shows the bias (left) and standard error (right) of
RRcrude on the x-axis versus that of RRcond on the y-axis. As
in Figure 4, the y ¼ x line is provided. Results are displayed
for all simulation scenarios with b0 ¼ 0.2, b2 ¼ 1, and 3
values of c1. Results for other values of b0, b2, and c1 are
similar to the results shown here and are available in Web
Appendix 2 (Web Figures 5–10).

In the multiplicative simulations, associations are param-
eterized as risk ratios, so the 3 values of c1 shown in Figure 6
indicate that the variable Z is simulated to be a perfect
instrument, a near-instrument (or near-confounder), and a con-
founder, respectively, for the exposure-outcome pair (X, Y).
Results are similar to the results from the additive simulations.
In the presence of unobserved confounding, conditioning on
a true instrument increases the bias and standard error in
exposure effect estimation, and this increase tends to be
larger when the instrument is strong (a2 ¼ 1.8) and when
the crude bias or standard error is large. In the scenarios with
no confounding bias from U (a1 ¼ 1 or b1 ¼ 1), conditioning
on Z does not create bias. Conditioning on a near-instrument
tends to result in increased bias when the crude bias is large
and decreased bias when the crude bias is relatively small.
When Z is a confounder, bias generally decreases as a result
of conditioning on Z, but standard error may increase or
decrease.

The largest absolute bias increase for any scenario was an
increase of 1.636 on a crude bias of 7.773, achieved when
c1 ¼ 1, b0 ¼ 0.01, and the parameters a1, a2, b1, and b2 are
maximized. The same scenario results in the largest increase
in standard error across all multiplicative simulation scenarios:
an increase of 0.25 on a crude standard error of 1.676. The
scale of both bias and standard error is larger in the multipli-
cative simulations than in the additive simulations, but bias
remains the primary source of error.

DISCUSSION

Our simulation studies showed that estimating an exposure
effect conditional on a perfect instrument can increase the
bias and standard error of the exposure effect estimate, but
these increases were generally small. In particular, when re-
sidual confounding was small, the increase in bias and vari-
ance due to conditioning on an IV was essentially negligible.
When the residual confounding bias was large, the increase
in estimation error due to conditioning on an IV represented
only a small fraction of the overall error in most scenarios.
In addition, increases in bias and standard error were ob-
served when conditioning on a variable that was strongly
associated with exposure and weakly associated with outcome.
These increases were always smaller than the increases ob-
served when adjusting for a perfect IV with equivalent associ-
ation with exposure. As expected, the effects of conditioning
on an IV or near-IV were reduced with diminishing strength
of the unmeasured confounding and diminishing strength
of the IV association with exposure. These results are
consistent with past theoretical and simulation findings
(18, 20–24, 34).
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Figure 5. Standard error of exposure effect estimators obtained with
and without conditioning on Z under a range of study sizes.
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These results have clear implications for epidemiologic
practice. First, variables that are known to be instruments
should not be conditioned upon. The belief that balancing

all preexposure covariates, as in randomized studies, can do
no harm does not hold in nonexperimental studies because
there may exist unobserved factors that cannot be balanced.
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Figure 6. Bias (left panels) and standard error (right panels) of risk ratio (RR) estimators with and without conditioning on Z. Each point represents
one simulation scenario in the multiplicative simulations with c1 ¼ 1 (upper sections), c1 ¼ 1.2 (middle sections), or c1 ¼ 1.8 (lower sections). The
symbols identify values of a2 (s, 1.0; n, 1.1); þ, 1.3; 3, 1.8). The solid diagonal line marks equality. Dashed lines mark the threshold for a 10%
increase or decrease, and dotted lines mark a 20% increase or decrease.
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Contrary to the current practice of selecting the best predic-
tors of exposure, a very strong association with exposure may
be indicative of an IV or near-IV that should be excluded, as
shown in the example study. Second, ordering variables based
on the magnitude of their association with outcome could
provide a reasonable approach to selecting covariates for con-
ditioning, as recommended by Hill (35) and implemented in
a high-dimensional propensity score algorithm (31) and in
Bayesian propensity scores (36). Although IVs may be as-
sociated with outcome in the presence of unmeasured con-
founding, covariates with relatively strong associations with
outcome are unlikely to be IVs. Finally, within the context
of scenarios considered in the simulation studies, inadvertently
including an IV in the set of conditioning variables does not
appear to pose a major threat to the validity of exposure
effect estimates. In most scenarios, the need to control re-
sidual confounding greatly outweighed bias amplification
caused by adjusting for an IV. This threat can be further
reduced if strong predictors of exposure are carefully con-
sidered before being used in adjustment.

Although we were able to deduce consistent trends across
simulation scenarios, specific findings are dependent on the
specification of the data-generating process and the param-
eter values considered. In particular, it is clear that the mag-
nitude of the increase in bias is limited only by the extent to
which the IV determines exposure. In the case of a binary
exposure, this parameter is constrained by the baseline prev-
alence of exposure and the effects of other factors that de-
termine exposure. When analyzing a continuous exposure,
no such constraints exist, and the IVassociation with exposure
may be larger. In addition, in cases of a known IV (e.g.,
randomized assignment to exposure), the association between
the IV and exposure may be stronger. In our simulation stud-
ies, the parameter values were chosen to represent the range
of associations most likely to be encountered in epidemio-
logic studies with a binary exposure and a binary covariate
that is not known to be an IV. Within this range, the maximum
increase in bias (over the crude bias) observed in any sce-
nario was approximately 20%. When we further considered
a scenario with a stronger association between the IV and
exposure, we observed a 56% increase in bias. However,
achieving this magnitude of bias increase required both ex-
tremely large unmeasured confounding and a very strong
instrument. On the other hand, when conditioning on a con-
founder, a 50% or greater decrease in bias was relatively easy
to achieve and did not require such an extreme scenario.
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APPENDIX 1

Example Data Set

We present an example data set from the multiplicative
simulation study, where amplification of bias and standard
error were relatively large. These data were simulated under
the following true parameter values: b0 ¼ 0.01, b1 ¼ 8,
b2 ¼ 8 (the true exposure effect), a0 ¼ 0.3, a1 ¼ 1.8, a2 ¼ 1.8,
c0 ¼ 0.3, and c1 ¼ 1. The simulated data for one set of
10,000 patients is given in Appendix Table 1. The crude
estimate of exposure effect from these data is RRcrude ¼
15.52. Thus, the bias of RRcrude is 7.52 (15.52 � 8 ¼ 7.52).
The estimate of exposure effect conditional on Z is RRcond ¼
17.07, and the bias of RRcond is 9.07 (17.07 � 8 ¼ 9.07).
Note that the same mechanism that results in bias amplification
also results in estimates of exposure effect that are heteroge-
neous across strata of Z (risk ratios of 12.7 when Z ¼ 0 and
26.8 when Z ¼ 1).

APPENDIX 2

Empirical Example

The data in the empirical example come from the inves-
tigation described by Patrick et al. (25). That cohort study
included patients initiating the use of statins and glaucoma
medications among Medicare beneficiaries aged 65 years or
older who were enrolled in the Pharmaceutical Assistance
Contract for the Elderly (PACE) program provided by the
state of Pennsylvania. Enrollees in PACE were eligible for
inclusion in the study population if they had filled a prescrip-
tion for any statin or glaucoma drug between January 1,
1996, and December 31, 2002, and demonstrated continu-
ous use of the health-care system.

Initiation of drug therapy was defined as an eligible ben-
eficiary’s filling at least 1 prescription for a medication of
interest between January 1, 1996, and December 31, 2002,
but not using one during the 18 months prior to the index
date. The index date was the first date on which a prescrip-
tion for a statin or glaucoma drug was filled. Follow-up was
continued for 1 year after the initiation of therapy. Covariates
were defined on the basis of enrollment information (age, sex,
race) and claims made during the year before the index date.

Appendix Table 1. One Simulated Data Set From the

Multiplicative Simulations

Z 5 0 Z 5 1

Y 5 1 Y 5 0 Y 5 1 Y 5 0

X ¼ 1 603 1,258 1,084 2,263

X ¼ 0 80 3,059 20 1,633
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